Maximum Entropy for Collaborative Filtering
نویسندگان
چکیده
Within the task of collaborative filtering two challenges for computing conditional probabilities exist. First, the amount of training data available is typically sparse with respect to the size of the domain. Thus, support for higher-order interactions is generally not present. Second, the variables that we are conditioning upon vary for each query. That is, users label different variables during each query. For this reason, there is no consistent input to output mapping. To address these problems we purpose a maximum entropy approach using a non-standard measure of entropy. This approach can be simplified to solving a set of linear equations that can be efficiently solved.
منابع مشابه
Collaborative Filtering Efficiently Using Purchase Orders
We propose a new collaborative filtering method that can predict the next purchase item by efficiently using the sequential information in purchase histories for recommendations. Markov models and maximum entropy models are both widely used techniques for such recommendations. In Markov models, parameters can be estimated and updated fast and efficiently, but predictions may not be accurate. On...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA Graphical Model Formulation of Collaborative Filtering Neighbourhood Methods with Fast Maximum Entropy Training
Item neighbourhood methods for collaborative filtering learn a weighted graph over the set of items, where each item is connected to those it is most similar to. The prediction of a user’s rating on an item is then given by that rating of neighbouring items, weighted by their similarity. This paper presents a new neighbourhood approach which we call item fields, whereby an undirected graphical ...
متن کامل